

NEXT-GENERATION AUTHENTICATION IN WI-FI

Matthew Gast September 22, 2014

© 2013 Aerohive Networks CONFIDENTIAL

The next 60 minutes

This talk is not about 802.11ac

And now for something completely different...

© 2013 Aerohive Networks CONFIDENTIAL

Agenda

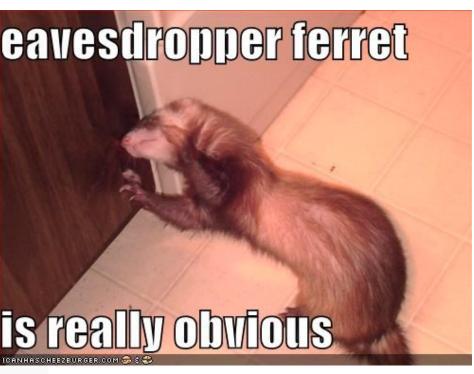
- Security property review
- PSK security analysis
- What comes next?

SECURITY REVIEW

Let's talk about hackers

(Yeah, I still miss it)

Types of attacks


- Passive attack
- Active attacks
- Dictionary attacks
- Denning-Sacco attack

Passive attacks

General flow

- Capture something from the protocol
- Do "stuff" with it analyze, compute, store
- May learn a shared secret itself (e.g. AirSnort)
- May learn enough to break the protocol
- Usually must get close enough to be seen while taking action (sitting in the parking lot)

Active attacks

- Be the device you want to be!
- Impersonate "honest" devices by
 - > Stealing keys
 - > Man-in-the-middle
 - > Protocol fuzzing
- Definitely must decloak to fire frames

Active attacks

- Be the device you want to be!
- Impersonate "honest" devices by
 - > Stealing keys
 - > Man-in-the-middle
 - > Protocol fuzzing
- Definitely must decloak to fire frames

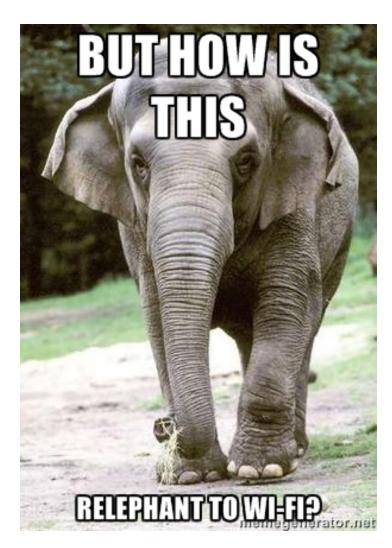
Dictionary attacks

- Run through all candidate secret keys
 - > Possibly enhanced by rainbow tables

Some implementations may rate-limit attempts

The Oxford English Dictionary	The Oxford English Detionary	The Oxford English Defionary	The Chinal Trigish Detenory	The Oxford English The honory	The Oxford Targi Ah Dictionary	TheOsland English Dictionary	The Oxfact Triglich Deficiency	TheCoderd English Difference Difference	The Oxfand English Dictionary	The Oxford English Dictorary	The Oxind Togish Detenary	TheOxioel English Dictionary	TheOrded English Dericnary	English.	The Oxford Triglish Dictorary	The Osked Trigish Detenicy	The Oxfor Inglish Defense
ECCHIO EDITION	sacaso tomás	MCOND EXTICH	ations7 Extran	NORD INCOM	BCHO IDCO1	urose (100	MODIE DTRON	ACCND DATION	BROWD BROOM	HOURD	Riccera Herrori	Roos P Serves	SHOPP IN THE W
II Accession	- M Our Gale		V Dankartek	VI False (assa)	VII Re- htmanen	VII		he Oxf		= 1	XIV http://www.com	××	XVT Gur des	XVII In Theorem	XVIII Pre- Defended	XDV Unimerator Parase	X 10
								Englisl Dictiona	h								
							D	Dictiona	ıry								
		and a set	A	6	() 1000			SECOND EDITIO	N	Allen 1			000 E	C C C C C C C C C C C C C C C C C C C		000	0100
								A-Bazouki									

Denning-Sacco attack


• Flow

- > Record session X
- > Wait for the time to be right
- Replay session X to get on-line
- Moral #1: Timestamp the protocol somehow
- Moral #2: The importance of forward secrecy

- > Sometimes called Perfect Forward Secrecy (PFS)
- > More computation now, but benefits later
- If you break run X of the protocol, it should not help you in the future

A question?

- In large-scale environments, 802.1X is deployed by IT department (or self-service tools)
- But what if you don't have the ability to configure 802.1X?

Yuck! We need passwords

- Pros: passwords are simple, and people understand how to use them
 - > Just put in the password and go!
 - Can add additional steps with new APIs for additional factors

Cons: simple

- > People pick names of pets or children
- Often need long passwords to have any security value ("sufficient entropy")
- > Re-use across systems
- > And WPA-Personal (PSK) is just awful

- Password robustness: No "salt" in the handling of passwords, so it is possible to try all passwords reasonably quickly
 - > From November 2003! <u>http://wifinetnews.com/archives/2003/11/</u> <u>weakness_in_passphrase_choice_in_wpa_interface.html</u>
- Offline dictionary attacks: capture the authentication exchange, and start computing on it
 - Many tools implement this, for example <u>http://www.willhackforsushi.com/Cowpatty.html</u> and <u>http://aircrack-ng.org/</u>
 - > GPUs can accelerate this up to 4000 passwords/sec
 - > Amazon cloud: \$0.85/min for 250,000 passwords/sec (improved since 2011)
- Perfect forward secrecy? Heck no! Get the key, and you're in forever (or at least until the key changes)

How does WPA-Personal stack up?

 Password robustness: No "salt" in the handling passwords, so it is possible to try all passwords reasonably quecking

> From November 2003! <u>http://wifinetnews.com/archives/2003/ weakness_in_passphrase_choice_in_wpa_ints_ace.html</u>

Offline dictionary attacks: capture authentication exchange, and start computing on it

- Many tools implement the for excepte <u>http://www.willhackforsush_om/c_wpatty.html</u> and <u>http://aircrack-ng.</u>
- > GPUs can accelera the to 4000 passwords/sec
- > Amazon class \$0.8. In for 250,000 passwords/sec (improved since 201

Perfect forwer (sec. cy? Heck no! Get the key, and you're in forever (or at a contil the key changes)

Oddly, it's usually to make them harder to remember

(example collected from the Internet)

• Should not be easily defeated by small pieces of paper

SO WHAT ARE WE DOING ABOUT IT?

What kinds of fixes does PSK need?

Stop dictionary attacks

- > Allow better passwords
- > Handle passwords better

Implement forward secrecy (it's about time)

- Stop passive observation attacks (more like lpsec than WEP)
- Stop flooding attacks

Enter SAE = "Simultaneous Authentication of Equals"



Originally defined in 802.11s (mesh extensions)

Same goal as all cryptographic protocols: share a key between two devices

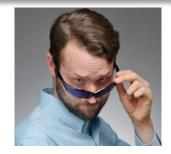
Basic protocol design: commit and then confirm

- > Either side can commit at any time
- > After both sides commit, one party confirms
- > After both sides confirm, the protocol is complete

Key exchange: Diffie-Hellman cryptography

- > Either cyclic group or elliptic curve
- > Many curves to choose from: NIST curves (FIPS 186-3), Brainpool curves (RFC 5639)
- > Lightweight actually better than PSK for computation!

Diffie-Hellman exchanges are not authenticated unless it is designed on top of the crypto


- > SAE adds authentication based on the password
- > Actually a transform of the "password equivalent" (PE)

Important addition: "anti-clogging" protection to stop flooding attacks

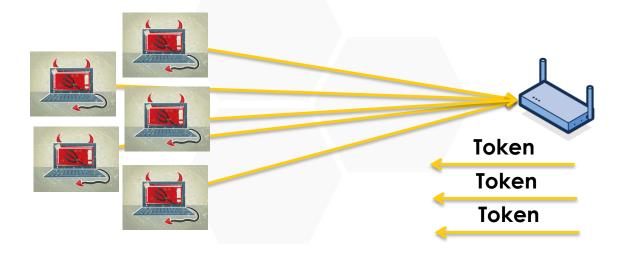
SAE Commit

random -> rnd-A, mask-A scalar-A = (rnd-A + mask-A) mod q element-A = PE ^{-mask-A} random -> rnd-*M*, massk BM scalar-M=((md-BM-masskB)M) odd q element-M=FFE-massk BM

(PE scalar-M * element-M) rnd-A mod p = (PE scalar-A * element-A) rnd-M mod p

KCK | MK = KDF (Shared Secret, "stuff", (scalar-A + scalar-M) mod q)

confirm-M = H(KCK, scalar-A | scalar-M | element-A | element-M)


confirm-A = H(KCK, scalar-A | scalar-M | element-A | element-M)

> Master Key-based exchange is used to ensure confirmation Two parties begin using new keys

- When lots of sessions are pending, a peer will start issuing tokens needed to continue the exchange
 - > Attackers can't generate tokens without doing work
 - > Tokens limit the number of pending sessions

The password of the future

- This is the future of password-based security in Wi-Fi
- Transition: support both PSK & SAE simultaneously
- The end goal: SAE is how we do passwords

THANK YOU!

@MatthewSGast
mgast (at) aerohive (dot) com